\qquad

Compound Interest and the TVM Solver - Notes

Compound interest is when the interest earned is added to the original amount invested more frequently, and so you earn more interest.

note: | Annually $=1$ time per year | |
| :--- | :--- |
| | Semi-annually $=2$ times per year |
| | Quarterly $=4$ times per year |
| | Bi-weekly $=26$ times per year |
| | Daily $=365$ times per year |

TVM SOLVER: You can use this program in your graphing calculator to calculate compound interest.

* To start press: APPS - Finance - TVM Solver
* Enter the following values
$N=$ total \# of payments
$I=$ annual interest rate (as a decimal)
PV = present value
PMT = payment each period
Both are entered as negative values
FV = future value
PY = \# of payments per year
CY \# of compounding periods per year
BEGIN (Always use BEGIN for investments, and END for loans)
* To finish, highlight the wanted value and press: ALPHA - ENTER

Ex.1: Calculate the future value when $\$ 5000$ is invested at 6.5% per annum (per year) compounded semiannually for 8 years.
$N=16$
$I=6.5$
$P V=-5000$
$P M T=0$
$\mathrm{FV}=$?
$P Y=2$
$C Y=2$
BEGIN
Ex.2: How long will it take $\$ 3000$ to double if it is invested at 4.5% p.a. (per annum) compounded monthly?

$\frac{185.19}{12}=15.43 y \mathrm{rs} \quad$| $\mathrm{N}=185.19$ | |
| :--- | :--- |
| $I=4.5$ | |
| $P V=-3000$ | |
| $P M T$ | $=0$ | | AV $=6000$ |
| :--- |
| $P Y=12$ |
| FY $=12$ |
| BEGIN |

Ex.3: How much must be invested at 6.8% p.a. compounded quarterly in order to have $\$ 10000$ after 5 years?
$N=20$
$F V=10000$
$I=6.8$
$\$ 7138.07$
$I=6.0$
$P V=?-7138.07$
$P M T=0$
$P y=4$
$C Y=4$
BEGIN

Compound Interest and the TVM Solver - Assignment

1. Use the TVM Solver to calculate the amount (Future Value) of the following investments:
a) $\$ 1000$ invested at 6% per annum compounded semi-annually for 5 years.
b) $\$ 800$ invested at 4.8% per annum compounded semi-annually for 3 years.
c) $\$ 600$ invested at 8% per annum compounded quarterly for 3 years.
d) $\$ 1200$ invested at 6.8% per annum compounded quarterly for 10 years.
e) $\$ 2500$ invested at 12% per annum compounded monthly for 4 years.
f) $\$ 10000$ invested at 5.4% per annum compounded monthly for 8 years.

a)	$N=$	$F V=$	b)	$N=$	$\mathrm{FV}=$
	$\mathrm{I}=$	PY =		$\mathrm{I}=$	PY =
	$\mathrm{PV}=$	$C Y=$		$\mathrm{PV}=$	$C Y=$
	PMT $=$	BEGIN		PMT $=$	BEGIN
c)	$N=$	$F V=$	d)	$N=$	$\mathrm{FV}=$
	$I=$	PY =		$I=$	Py =
	$\mathrm{PV}=$	$C Y=$		PV $=$	$C Y=$
	PMT $=$	BEGIN		PMT $=$	BEGIN
e)	$N=$	$F V=$	f)	$N=$	$\mathrm{FV}=$
	$I=$	PY =		$I=$	PY =
	$\mathrm{PV}=$	$C Y=$		$\mathrm{PV}=$	$C Y=$
	PMT $=$	BEGIN		PMT $=$	BEGIN

2. Use the TVM Solver to determine the following times. Answer in years.
a) How long will it take an investment of $\$ 1000$ to reach $\$ 1200$ at 6.5% p.a. compounded monthly?
b) How long will it take for an investment of $\$ 5000$ at 5.6% p.a. compounded quarterly to double in value?
c) How long will it take for an investment of $\$ 10000$ at 9.5% p.a. compounded semi-annually to triple in value?
d) How long will it take for an investment of $\$ 3000$ at 8.2% p.a. compounded annually to reach $\$ 5000$?

a)	$N=$	$\mathrm{FV}=$	b)	$N=$	$\mathrm{FV}=$
	$\mathrm{I}=$	PY =		$\mathrm{I}=$	PY =
	$P V=$	$C Y=$		PV =	$C Y=$
	PMT $=$	BEGIN		PMT $=$	BEGIN
c)	$N=$	$\mathrm{FV}=$	d)	$N=$	$\mathrm{FV}=$
	$\mathrm{I}=$	PY =		$I=$	PY =
	$\mathrm{PV}=$	$C Y=$		PV $=$	$C Y=$
	PMT $=$	BEGIN		PMT $=$	BEGIN

3. Use the TVM Solver to determine the original amount (Present Value) invested.
a) How much must be invested at 3.5% p.a. compounded semi-annually in order to have $\$ 5000$ after 8 years?
b) How much must be invested at 4.1% p.a. compounded bi-weekly in order to have $\$ 2000$ after 3 years?
a)

$N=$	$F V=$
$I=$	$P Y=$
$P V=$	$C Y=$
PMT $=$	BEGIN

b) $\quad \mathrm{N}=$
$I=$
$P V=$
PMT $=$
$\mathrm{FV}=$
$\mathrm{Py}=$
PV =
BEGIN
$C Y=$ BEGIN

[^0]
[^0]: Answers: 1. a) $\$ 1343.92$ b) $\$ 922.34$ c) $\$ 760.95$ d) $\$ 2355.15$ e) $\$ 4030.57$ f) $\$ 15388.43$
 2. a) $2.8 \mathrm{yrs} \quad$ b) $12.46 \mathrm{yrs} \quad$ c) 11.84 yrs d) 6.48 yrs
 3. a) $\$ 3788.08$ b) 1768.70

