| Found | da+i | one | of | AA. | +1  | . 1 | 2 |
|-------|------|-----|----|-----|-----|-----|---|
| round | ודמנ | ons | OT | N c | ıтг | lΓ  | 6 |

Name: \_\_\_

## Compound Interest and the TVM Solver - Notes

Compound interest is when the interest earned is added to the original amount invested more frequently, and so you earn more interest.

<u>note</u>: Annually = 1 time per year Semi-annually = 2 times per year Quarterly = 4 times per year Bi-weekly = 26 times per year Daily = 365 times per year

TVM SOLVER: You can use this program in your graphing calculator to calculate compound interest.

- \* To start press: APPS Finance TVM Solver
- \* Enter the following values

N = total # of payments
I = annual interest rate (as a decimal)
PV = present value
PMT = payment each period
FV = future value
PY = # of payments per year
CY # of compounding periods per year

BEGIN (Always use BEGIN for investments, and END for loans)

Ex.1: Calculate the future value when \$5000 is invested at 6.5% per annum (per year) compounded semi-annually for 8 years.



N = 16 I = 6.5 PV = -5000 PMT = 0 FV = ? PY = 2 PX = 2 BEGIN

Ex.2: How long will it take \$3000 to double if it is invested at 4.5% p.a. (per annum) compounded monthly?

Ex.3: How much must be invested at 6.8% p.a. compounded quarterly in order to have \$10 000 after 5 years?

FV = 10000

PY = 4CY = 4

BEGIN



<sup>\*</sup> To finish, highlight the wanted value and press: ALPHA - ENTER

## Compound Interest and the TVM Solver - Assignment

- 1. Use the TVM Solver to calculate the amount (Future Value) of the following investments:
  - a) \$1000 invested at 6% per annum compounded semi-annually for 5 years.
  - b) \$ 800 invested at 4.8% per annum compounded semi-annually for 3 years.
  - c) \$ 600 invested at 8% per annum compounded quarterly for 3 years.
  - d) \$1200 invested at 6.8% per annum compounded quarterly for 10 years.
  - e) \$2500 invested at 12% per annum compounded monthly for 4 years.
  - f) \$10 000 invested at 5.4% per annum compounded monthly for 8 years.

| a) | 1/1 = | rv =  | b) | 1/4 = | rv =  |
|----|-------|-------|----|-------|-------|
|    | I =   | PY =  |    | I =   | PY =  |
|    | PV =  | CY =  |    | PV =  | CY =  |
|    | PMT = | BEGIN |    | PMT = | BEGIN |
| c) | N =   | FV =  | d) | N =   | FV =  |
|    | I =   | PY =  |    | I =   | PY =  |
|    | PV =  | CY =  |    | PV =  | CY =  |
|    | PMT = | BEGIN |    | PMT = | BEGIN |
| e) | N =   | FV =  | f) | N =   | FV =  |
|    | I =   | PY =  |    | I=    | PY =  |
|    | PV =  | CY =  |    | PV =  | CY =  |
|    | PMT = | BEGIN |    | PMT = | BEGIN |

- 2. Use the TVM Solver to determine the following times. Answer in years.
  - a) How long will it take an investment of \$1 000 to reach \$1 200 at 6.5% p.a. compounded monthly?
  - b) How long will it take for an investment of \$5 000 at 5.6% p.a. compounded quarterly to double in value?
  - c) How long will it take for an investment of \$10 000 at 9.5% p.a. compounded semi-annually to triple in value?
  - d) How long will it take for an investment of \$3 000 at 8.2% p.a. compounded annually to reach \$5000?
  - FV = FV = N= N= T = PV = T = PV = PV = CY = PV = CY = PMT = BEGIN PMT = BEGIN N= FV = FV = c) d) NI = PY = I= PY = I = PV = CY = PV = CY = BEGIN PMT = PMT = BEGIN
- 3. Use the TVM Solver to determine the original amount (Present Value) invested.
  - a) How much must be invested at 3.5% p.a. compounded semi-annually in order to have \$5000 after 8 years?
  - b) How much must be invested at 4.1% p.a. compounded bi-weekly in order to have \$2000 after 3 years?

Answers: 1. a) \$1343.92 b)\$922.34 c)\$760.95 d) \$2355.15 e) \$4030.57 f) \$15388.43

2. a) 2.8 yrs b) 12.46 yrs c) 11.84 yrs d) 6.48 yrs

3. a) \$3788.08 b) 1768.70